DSC 214 Polyma差示扫描量热仪
产品介绍
聚合物高效表征的系统解决方案DSC 测量的新型整体解决方案操作简单、功能强大、测量精确、日常使用方便 — 这些都是创新型 DSC 214 Polyma 的优异特性。这款仪器设计独特,无论用户是初学者还是经验丰富的专业人士,都能满足其需求。尤其是开发了两款新软件:自动分析与曲线识别,树立了 DSC 新的标准,这些将引发 DSC 分析的革命。
DSC 214 Polyma - 技术参数
* 最大速率取决于温度范围 DSC 214 - 软件功能
DSC 214 - 应用实例使用 DSC 进行聚合物质量控制—进货检验图中显示了看似相同的两种颗粒的 DSC 曲线,样品为 PA66,分别在不同时间交付(以 20K/min 的速率降温后二次升温)。蓝色曲线(旧样)上在 63°C 出现玻璃化转变,263°C 出现熔融峰,均为 PA66 的典型表现。在新料(红色曲线)上则出现了双峰,峰值温度为 206°C 和 244°C。这表明新料中可能存在与 PA66 共混的第二种聚合物。 样品质量:11.96 mg(蓝色)和11.85mg(红色);在动态 N2 气氛下以 20K/min 降温后再以 20K/min 升温至 330°C。
使用 DSC 进行聚合物质量控制—氧化稳定性OIT 测试(氧化诱导时间)是用于评价聚合物特别是聚烯烃耐氧化性的常用测试方法。在这个例子中,两个 PP 样品在动态氮气气氛下加热到 200°C。在加热过程中检测到的吸热峰对应于聚丙烯的熔融。在 200°C 恒温 3 分钟,将气体切换至空气。其后出现的放热效应为聚合物的氧化分解。此例中,样品A(OIT 6.6分钟)比样品B(OIT 11.6分钟)更早的发生了氧化反应。 样品质量:9.48mg(样品A)和 9.55 mg(样品B);在 N2 气氛(50 ml/min)下以 20K/min 加热至 200°C,在 N2 下恒温 3min;在空气下(50ml/min)恒温直至分解。
橡胶的低温性能测试 - SBR 橡胶的二次升温测试右图所示为 SBR 橡胶样品在 -100℃ 到 220℃ 间的两次升温曲线,两次升温过程中都测得 -47℃(中点)的玻璃化转变,且 0℃ 到 70℃ 间都有个较宽的吸热峰,猜测为添加剂的熔融。仅在一次升温过程中检测到峰值为 169℃ 的放热峰,为弹性体后固化过程。
热塑性聚氨酯的热性能测试下图为热塑性聚氨酯(TPU)样品的测试结果。一次升温过程中,玻璃化转变出现在 -42°C,为样品中链段的软化过程。一次升温过程中在 100°C 到 210°C 有两个吸热峰,二次升温过程中只检测到其中一个由熔融(热塑性组分)引起的可逆转变(7.40J/g),不可逆转变的峰(207°C)为易挥发组分或添加剂的挥发,这种挥发导致玻璃化转变温度升高,二次升温过程中检测到玻璃化转变温度为 -28°C。 样品质量:10.47mg,N2 气氛,以 10K/min 的速率从 -100°C 升温至 250°C,两次升温
半结晶热塑性材料的等温结晶DSC 214 Polyma 配合 IC70 机械制冷,测试 PA66 GF30(30%wt 玻璃纤维)的等温结晶过程。较低的炉体热质量,使得炉腔内部可在几秒内实现 60℃ 的降温。在这个前提下,才有可能将 PA66 的结晶过程(17min 附近的结晶峰)和温度调整引起的曲线波动(15.4min 至 16min 之间的曲线波动)分开。同时从温度曲线可见,在急速降温时温度过冲极小,说明 DSC214 Polyma 具有杰出的冷却性能。
回收料的影响—失效分析
本例中研究的是两种用于注塑成型的聚丙烯回收料,材料 A 在注塑过程结束的时候已完全结晶,而材料 B 仍处于熔融状态,通过 DSC 测试,可以分析两种材料结晶行为存在差异的原因。 降温过程中的放热峰为高聚物的结晶过程。回收料 A(蓝色曲线,结晶起始点 126℃)的结晶起始温度高于回收料 B(红色曲线,结晶起始点 122℃)。 除了峰值为 121℃(蓝色曲线)和 118℃(红色曲线)的主峰外,还有 97℃ 的峰(蓝色曲线)和 107℃ 的肩峰(红色曲线),小的吸热峰说明材料中还存在另外一种组分,材料 A 中的这一组分导致了较早的成核过程。
PP 再生料的不同结晶行为 通过二次升温曲线可做进一步验证,除了 165℃ 和 163℃ 的吸热峰(PP材料典型的熔融峰),蓝色曲线在 110℃ 和 124℃ 还有两个吸热峰,说明材料 A 中还含有 LDPE、LLDPE 或 HDPE(熔融温度随密度增大而升高)等额外的组分。相反,材料 B 中仅在 126℃ 有一个小的吸热峰。 混入了不同 PE 杂质的 PP 再生料的熔融
注塑成型的工艺参数优化
半晶态高聚物(如 PBT)的结晶行为随冷却历史不同而变化,这对于预估实际生产过程中的开模、取出成品部件的温度非常重要。 本例显示的是含 30%wt 玻璃纤维的PBT材料,以多种不同的降温速率(20K/min到200K/min)冷却后的升温曲线。 升温过程统一采用 50K/min 的升温速率,以 20K/min 速率冷却后的升温曲线(红色)可以明显的看到 PBT 材料典型的β相肩峰;以 50K/min 速率冷却后的曲线(蓝色)上β相吸热峰的温度降低,与主峰分的更开;而以 100K/min 和 200K/min 速率冷却后的曲线(分别对应绿色和黑色)上只看到放热的冷结晶过程,没有β相的吸热峰。
以不同速率冷却后 PBT GF30 的升温曲线 同时,下图展示了不同降温速率对 PBT 结晶行为的影响。以 20K/min(红色)的速率降温时,PBT 结晶起始于 194℃,结晶峰值温度为 188℃。以 200K/min(黑色)的速率降温时,结晶起始温度为 171℃,峰值温度为 156℃,120℃ 时曲线出现拐折,但此时结晶放热过程仍未完成。 PBT 在不同的冷却速率下的降温曲线
环氧粘合剂的动力学分析
利用耐驰动力学软件建立化学反应过程的动力学模型,可以在用户定义的温度条件下对化学反应体系的行为进行预测,以进行工艺优化。 本例研究双组分环氧粘合剂的固化过程,将三个样品以不同速率(2K/min、5K/min 和 10K/min)升温至 200℃,固化反应的峰值温度随升温速率提高而升高。单步反应的动力学模型与试验曲线基本重合,相关系数高于 0.999。因此,此模型可用于对等温和用户自定义的温度程序下的反应进行预测。
单步反应的实测曲线(虚线)与理论曲线(实线)对比
下图显示的是不同温度下恒温时样品的固化度随时间的变化,由软件基于动力学模型计算得到。在 120℃ 下恒温 3min,样品的固化度即达 95%,而在 110℃ 下达到同等固化程度需要恒温 5min 以上。
不同温度下等温的固化反应预测 DSC 214 - 相关附件DSC 214 Polyma 能够根据客户的要求配置多种附件进行系统优化和扩展。 各种冷却系统都能够对炉体进行冷却,无论是通过空气压缩机冷却至室温还是利用液氮系统将温度降至 -170°C。低成本的机械制冷是除了液氮之外的另一个选择,能够在 -40°C 至 600°C(IC40)或 -70°C 至 600°C(IC70)温度范围内使用。 NETZSCH 提供不同材质的坩埚(铝,铜,银,高压不锈钢等等)以适用于几乎所有应用和材料。可更换压头的压机适用于冷焊的铝坩埚和中压不锈钢坩埚。 为日常应用提供的能够放置 20 个样品的自动进样器(ASC)也适用于不同的坩埚类型。 优化样品制备利用 NETZSCH 的样品制备套件,即使象玻纤增强的小颗粒或小块状材料都能很快地制备好。 选择合适的 DSC, TGA 和 STA 坩埚对测试样品的重要性
* 坩埚容积:盖子正压时为 40ul,反压则为 25ul。 ** 使用同一台压机可以密封所有标准型号的 Al 坩埚;配件编号:6.240.10-80.0.00A 用户评论 产品评分 目前评分共0人 产品质量
售后服务
易用性
性价比
|
同品牌产品:
相关产品:
|